QUALIDADE DA ÁGUA PARA FINS DE IRRIGAÇÃO NA MICROBACIA DO CórREGO DO Ipê, MUNICÍPIO DE ILHA SOLTEIRA, REGIÃO NOROESTE PAULISTA*

Gilmar Oliveira SANTOS **
Fernando Braz Tangerino HERNANDEZ ***
Renato Alberto Moreso FRANCO ****
Diego Gonçalves FEITOSA *****
Ronaldo Cirta LIMA ******
Gustavio Cavallari BARBOZA *******
Luiz Sérgio VANZELA ********

RESUMO: Este trabalho teve como objetivo determinar a qualidade da água para fins de irrigação na microbacia do Córrego do Ipê, localizada no município de Ilha Solteira (SP). As coletas foram realizadas no período de 2006 a 2011. A microbacia apresentou grande quantidade de ferro total presente na água, chegando a 5,2 mg.L⁻¹. A maior parte das análises de sólidos apresentou baixo potencial de danos aos sistemas de irrigação. Concluiu-se que é necessário a utilização de equipamentos de filtragem, principalmente no uso da irrigação localizada para assegurar um desempenho satisfatório do sistema.

INTRODUÇÃO

A determinação da qualidade dos recursos hídricos de uma região favorece o planejamento estratégico das bacias hidrográficas, principalmente as regiões que possuem sua economia voltada para a agricultura irrigada. Através do monitoramento, é possível detectar, ainda no início, os impactos ambientais e as alterações na qualidade e disponibilidade de água em um recurso hídrico.

A região de Ilha Solteira, noroeste paulista, compreende a microbacia do Córrego do Ipê que abrange parte da área urbana e parte rural, monitorada mensalmente, e representa grande importância socio-econômica e ambiental, caracterizando-se como zona de interesse.

* Proje1to financiado pelo CNPq. Processo (577.369/2008-5).
** Engenheiro ambiental e mestre em Sistemas de Produção, UNESP, Ilha Solteira, bolsista CNPq. Caixa Postal 34, CEP 15.385-000, Ilha Solteira, SP. Fone (18) 8122-7569. e-mail: gilmar.engambienta@yahoo.com.br.
*** Engenheiro agrônomo e professor titular UNESP, DEFERS, UNESP, Ilha Solteira, SP. fabianpic@yahoo.com.br.
**** Biólogo e doutorando em Sistemas de Produção, UNESP, Ilha Solteira SP.
***** Engenheiro agrônomo e mestre em Sistemas de Produção, UNESP, Ilha Solteira, SP.
****** Engenheiro agrônomo e doutorando em Sistemas de Produção, UNESP, Ilha Solteira, SP.
******* Biólogo e mestre em Sistemas de Produção, UNESP, Ilha Solteira, SP.
******** Engenheiro agrônomo e doutor em Sistemas de Produção, UNESP, Ilha Solteira, SP.

UNIVERSITAS, Fernandópolis, v. 6, n. 1, 2010
estratégico pelo plano diretor municipal. A área de estudo é caracterizada por pequenos agricultores, cuja necessidade de irrigação é uma realidade para atender à exigência hídrica das mais diversas culturas, um assentamento rural e um bairro composto por várias chácaras de lazer, além de ser uma região conflitante devido à expansão urbana e manutenção de áreas agrícolas, fatos que são agravados devido à ausência de mata ciliar em todo o percurso do rio.

De acordo com Barbosa et al. (2010), o ferro presente na água usada para irrigação é um dos principais parâmetros que mais acarreta obstrução das tubulações e emissores dos sistemas de irrigação localizada. Para Hernandez et al. (2001), este fato ocorre devido à oxidação de Fe^{2+} para Fe^{3+}, que favorece o aumento da perda de carga, maior custo com energia para o bombeamento e consequente redução da uniformidade da irrigação.

Outro parâmetro de grande importância que prejudica o desempenho dos sistemas de irrigação é a presença de sólidos suspensos (areia, silt, argila, microorganismos, restos de animais e vegetais), dissolvidos (saíis minerais e totais). De acordo com Franco (2009), os sólidos são todos os resíduos resultantes da evaporação da água utilizada. O autor ressalta ainda que, em excesso, os sólidos causam obstrução nos sistemas de irrigação, principalmente na irrigação localizada, além da salinização do solo, dificultando, a absorção de água pelas plantas.

Assim, este trabalho teve como objetivo monitorar a qualidade da água para fins de irrigação na microbacia do Córrego do Ipê, localizado no município de Ilha Solteira, região noroeste do estado de São Paulo.

MATERIAL E MÉTODOS

Este trabalho foi realizado na microbacia do Córrego do Ipê, localizada no município de Ilha Solteira, região noroeste do estado de São Paulo. Segundo Köppen, o clima é classificado como subtropical úmido, CWA, com inverno seco e ameno e verão quente e chuvoso (ROLIM et al., 2007). De acordo Hernandez, Lemos Filho e Buzetti (1995) e Damião et al. (2010), a região é caracterizada com temperatura média anual de 24,5°C e precipitação de 1.354 mm/ano. De acordo com Santos, Hernandez e Rossetti (2010), a região noroeste paulista se caracteriza com oito meses de deficiência hídrica chegando a 490 mm/ano e com excedente hídrico de 179 mm/ano, enquanto, segundo Damião et al. (2010), se caracteriza com sete meses de deficiência hídrica chegando a 442 mm/ano e com excedente hídrico de 290 mm/ano.

A microbacia é caracterizada por possuir 48,2 Km², sendo composta por 47,7% da área total com cana-de-açúcar, 19,9% com pastagem, 8,2% com área urbana, 7,4% área com assentados, 4,9% com várzea, 3,6% com área rural, 3,3% com área de preservação permanente, 2,6% com rodovia, 1,5% de culturas perenes, 0,7 com matas e 0,2% de horticultura.

As coletas foram realizadas em garrafas de polietileno higienizadas e lavadas com água ionizada. As análises de ferro total e de sólidos foram realizadas no Laboratório de Hidráulica e Irrigação. Para análise de ferro total, foi utilizada o método do Colorímetro ferro espectral (mg.L⁻¹) da marca Hach, conforme metodologia utilizada por Franco e Hernandez (2009) e Vanzela, Hernandez e Franco (2010). As análises dos sólidos suspensos, dissolvidos e totais, foram determinadas a partir do método gravimétrico, utilizando cápsula de porcelana, balança eletrônica de precisão JK-200 da YMC CO, estufa 315 SE da Fanem, dissecador e papel de filtro (poros de 28 µm). As análises eram realizadas em até 24 horas após a coleta, assim, evitando a deposição dos sedimentos. Os valores de precipitação entre uma coleta e outra foram disponibilizados pela Área de Hidráulica e Irrigação da Universidade Estadual Paulista, campus Ilha Solteira, SP. Para determinação da qualidade da água para irrigação, utilizou-se a classificação proposta por Nakayama e Bucks (1986). Os resultados foram apresentados na forma de gráficos.

RESULTADOS E DISCUSSÃO

A tabela 1 apresenta os valores mínimo, médio e máximo de ferro total presente na água do Córrego do Ipê com os respectivos potenciais capazes de gerar danos nos sistemas de irrigação, de acordo com a classificação proposta por Nakayama e Bucks (1986).
Tabela 1. Concentração de ferro total no Córrego do Ipê

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Média</th>
<th>Potencial de dano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baixo</td>
</tr>
<tr>
<td>Fe Total</td>
<td>mg.L⁻¹</td>
<td></td>
<td></td>
<td>(%) das amostras</td>
</tr>
<tr>
<td>Ponto 1</td>
<td>0,2</td>
<td>5,2</td>
<td>1,6</td>
<td>11,8</td>
</tr>
<tr>
<td>Ponto 2</td>
<td>0,1</td>
<td>2,0</td>
<td>0,7</td>
<td>17,6</td>
</tr>
<tr>
<td>Ponto 3</td>
<td>0,2</td>
<td>4,8</td>
<td>2,5</td>
<td>3,0</td>
</tr>
<tr>
<td>Ponto 4</td>
<td>0,2</td>
<td>4,9</td>
<td>2,0</td>
<td>6,0</td>
</tr>
</tbody>
</table>

¹Ferro total: Baixo (0,2 mg.L⁻¹); Média (0,2-1,5 mg.L⁻¹); Alto (>1,5 mg.L⁻¹).
Fonte: Nakayama; Bucks, 1986.

Dentro o período de análise, o Córrego do Ipê nos Pontos 1, 2, 3 e 4 apresentaram concentração média de ferro total de 1,6, 0,7, 2,5 e 2,0 mg.L⁻¹, respectivamente. No período de análise, os Pontos 1 e 2 foram os que apresentaram maiores e menores valores de ferro total já registrados, sendo de 5,2 e 0,1 mg.L⁻¹, respectivamente. Nos pontos de amostragem 3 e 4, registrou-se maior concentração de ferro total (>1,5 mg.L⁻¹), apresentando, de acordo com Nakayama e Bucks (1986), alto potencial de danos aos sistemas de irrigação.

Observa-se que à medida que se aumenta a precipitação, eleva-se a quantidade de ferro total no manancial (figura 2). Essa alta concentração de ferro total nos Pontos 3 e 4 no Córrego do Ipê estão relacionados, principalmente, ao período chuvoso, devido à maior concentração de contribuição do escoamento superficial nesses pontos. Esse mesmo fato foi observado por Franco e Hernández (2009) na microbacia do Córrego do Coqueiro, região noroeste paulista.

Tais resultados estão relacionados à má conservação do solo, às erosões no solo e à influência do recebimento de escoamento superficial urbano. O Ponto 2 foi o que apresentou menor concentração de ferro, o que pode estar relacionado à decantação no local (represa), porém, com valor superior a 0,2 mg.L⁻¹ – o que sugere potencial médio de danos aos sistemas, segundo Nakayama e Bucks (1986).
Figura 2 Concentração de ferro total no Córrego do Ipé e acúmulo da precipitação entre o período de análises.
Fonte: Nakayama; Bucks, 1986.

De acordo com Hernandez et al. (2001), fatores como a má conservação do solo, ausência de mata ciliar, intensificação do processo erosivo e assoreamento formado por solos à base de sesquisóxido de ferro, aumentam significativamente a quantidade de ferro na água. Para Hernandez e Pertinari (1998), valores de ferro total acima de 0,5 mg.L\(^{-1}\) merecem atenção especial por parte dos projetistas devido a problemas de obstrução causada pelo ferro.

O manancial analisado apresentou de médio a alto potencial capaz de causar danos nos sistemas de irrigação, uma vez que concentrações superiores a 0,2 mg.L\(^{-1}\) foram observadas em todos os pontos de coletas e, em alguns casos, apresentando 100\% das análises de uma única coleta com valores superiores ao valor máximo considerado aceitável.

Outro parâmetro analisado foi a presença de sólidos suspensos, dissolvidos e totais presentes nas águas dos mananciais. Os resultados mínimos, máximos e médios obtidos estão apresentados na tabela 2 e 3, respectivamente.

Tabela 2 Concentração de sólidos suspensos no Córrego do Ipé

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS(^1)</td>
<td>mg.L(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto 1</td>
<td>0,0</td>
<td>91,0</td>
<td>30,4</td>
</tr>
<tr>
<td>Ponto 2</td>
<td>2,0</td>
<td>84,0</td>
<td>20,8</td>
</tr>
<tr>
<td>Ponto 3</td>
<td>1,0</td>
<td>97,0</td>
<td>27,8</td>
</tr>
<tr>
<td>Ponto 4</td>
<td>0,0</td>
<td>106,0</td>
<td>26,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Potencial de dano</th>
<th>Baixo (% das Amostras)</th>
<th>Médio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS(^1)</td>
<td></td>
<td>71,9 28,1 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto 1</td>
<td></td>
<td>96,8 3,2 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto 2</td>
<td></td>
<td>78,8 21,2 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto 3</td>
<td></td>
<td>80,6 16,2 3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponto 4</td>
<td></td>
<td>71,9 28,1 0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Sólidos suspensos: Baixo (<50 mg.L\(^{-1}\)); Média (50-100 mg.L\(^{-1}\)); Alto (>100 mg.L\(^{-1}\)).

Fonte: Nakayama; Bucks, 1986.
O Córrego do Ipê apresentou mais de 71% das amostras com baixo potencial de danos causados aos sistemas de irrigação pela presença de sólidos suspensos na água, sendo somente o Ponto 4 com alto potencial de danos. Os Pontos 1, 3 e 4 são explicados devido à má conservação do solo, ausência de mata ciliar e presença de gado no local. O baixo valor no Ponto 2 está associado à decantação. Uma vez que o local de coleta é uma represa.

Figura 3: Concentração de sólidos suspensos no Córrego do Ipê e acúmulo da precipitação entre o período de análises.
Fonte: Os autores, 2010.

As análises de sólidos suspensos foram as que apresentaram maiores oscilações entre uma coleta e outra, principalmente o Ponto 1, porém, não o suficiente para gerar alto dano aos sistemas de irrigação. De acordo com Franco (2008), os sólidos suspensos são todas as partículas em suspensão como areia, silte, microorganismos, restos de animais e vegetais que têm diâmetro superior a 10 µm. Segundo Nakayama e Bucks (1986), tais sólidos em alta concentração (>100 mg.L⁻¹) causam sérios danos aos sistemas de irrigação, gerando, assim, maior custo com manutenção e energia e menor uniformidade da irrigação.

Tabela 3: Concentração de sólidos dissolvidos no Córrego do Ipê

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Média</th>
<th>Potencial de dano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baixo</td>
</tr>
<tr>
<td>SD¹</td>
<td>mg.L⁻¹</td>
<td></td>
<td></td>
<td>(% das Amostras)</td>
</tr>
<tr>
<td>Ponto 1</td>
<td>37,0</td>
<td>239,0</td>
<td>84,7</td>
<td>100</td>
</tr>
<tr>
<td>Ponto 2</td>
<td>35,0</td>
<td>103,0</td>
<td>65,1</td>
<td>100</td>
</tr>
<tr>
<td>Ponto 3</td>
<td>5,0</td>
<td>241,0</td>
<td>73,8</td>
<td>100</td>
</tr>
<tr>
<td>Ponto 4</td>
<td>7,0</td>
<td>141,0</td>
<td>82,0</td>
<td>100</td>
</tr>
</tbody>
</table>

¹Sólidos Dissolvidos: baixo (<500mg.L⁻¹); médio (500-2000 mg.L⁻¹); alto(>2000 mg.L⁻¹).
Fonte: Nakayama; Bucks, 1986.
De acordo com Nakayama e Bucks (1986), o Córrego do Ipê apresentou baixo potencial capaz de causar danos aos sistemas de irrigação (<500 mg L\(^{-1}\)) em relação à presença de sólidos dissolvidos. Os sólidos totais presentes na águas dos mananciais são resultados do somatório dos sólidos suspensos e dissolvidos, ou seja, com os baixos potenciais de danos aos sistemas de irrigação da parte de ambos os sólidos já analisados, determina-se que a quantidade de os sólidos totais nestes mananciais não sejam suficientes para gerar altos danos aos sistemas de irrigação.

A figura 4 apresenta o comportamento da quantidade de sólidos dissolvidos presente na água e a precipitação ocorrida dentro do período de análise de uma coleta e outra.

![Diagrama de concentração de sólidos dissolvidos no Córrego do Ipê e acúmulo da precipitação entre o período de análises.
Fonte: Nakayama; Bucks, 1986.](image)

Segundo Vanzela (2004), os sólidos dissolvidos estão muito relacionados ao lançamento de esgoto, áreas agrícolas e habitações. Mesmo com todos esses fatores em ocorrência nos mananciais analisados, não foram superiores capazes de gerar danos aos sistemas de irrigação.

A presença de sólidos totais presentes na águas dos mananciais são resultado da presença dos sólidos suspensos e dissolvidos, ou seja, com os baixos potenciais de danos aos sistemas de irrigação da parte de ambos os sólidos já analisados, determina-se que as quantidades de sólidos totais nestes mananciais não sejam suficientes para gerar altos danos aos sistemas de irrigação.

A redução de ferro total e sólidos que ocorre no segundo ponto de coleta "represa" em relação ao primeiro, demonstra-se que esses são depositados durante o percurso, principalmente na represa, que é um local onde ocorre redução da velocidade de água, favorecendo a deposição de tais sólidos, causando o assoreamento.

Para os agricultores se assegurarem contra danos causados pela presença de ferro total e dos sólidos, faz-se necessária a utilização de equipamentos de filtração, principalmente no uso da irrigação localizada, para que assegure um desempenho confiável. É fundamental a manutenção e limpeza dos finais de linha, a fim de se evitar o acúmulo dos sólidos e ferro total.
Resultados semelhantes foram obtidos por Barboza (2010) no Córrego do Coqueiro, região noroeste paulista em um monitoramento de três anos, e por Moura et al. (2010), segundo os quais, com exceção do ferro total, a microbacia do Córrego do Cinturão Verde, também localizada na região de Ilha Solteira, apresentou boa qualidade da água para fins de irrigação.

Assim, sugere-se que o monitoramento da qualidade das águas para irrigação é de essencial necessidade para se determinarem os potenciais riscos que possam causar danos aos sistemas de irrigação e quais as alternativas mais viáveis que envolvem custos e, em alguns casos, não uniformidade da irrigação devido a obstruções causadas pela presença de ferro ou sólidos na água favorecendo, consequentemente, a redução da produtividade agrícola.

CONCLUSÕES

Considerando a qualidade da água da microbacia do Córrego do Ipê para fins de irrigação, devem-se utilizar equipamentos de filtragem, principalmente no uso da irrigação localizada, para se evitar a obstrução de tabulações e emissores devido à grande quantidade de ferro total existente no córrego.

Mesmo com os baixos valores de sólidos presentes nas águas analisadas, é recomendada a conservação do solo, formação de mata ciliar e manejo do escoamento superficial a fim de evitar problemas futuros, pois se trata de uma área estratégica para o crescimento agrícola.

ABSTRACT: This study aimed to determine the quality of water for irrigation purposes in the watershed of Coqueiro do Ipê, located in Ilha Solteira (São Paulo state – Brazil). Samples were collected from 2006 to 2011. The watershed had a great amount of total iron in the water, reaching 5.2 mg·L⁻¹. Most solids analyses showed low potential for damage to irrigation systems. The use of filtering equipment is necessary, especially when using drip irrigation, in order to ensure satisfactory performance of system.

Keywords: Iron. Slitting. Water quality.

REFERÊNCIAS BIBLIOGRÁFICAS

