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WINSRFR: Software for surface
Irrigation analysis
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Release history

V1 (August, 2006)
Integrates functionality from BASIN, BORDER & SRFR
Adds irrigation event analysis functions

V2 (Dec 2007)

Enhancements to event analysis functions

Incorporates design and operations analysis procedures
for open-end furrows

Enhancements to simulation engine

V3 (Mar 2009)

Replaces design and operational analysis procedures for
borders and basins

Design/analysis procedures for close-end borders and
furrows, level furrows, and furrows with cutback

(Bautista et al., 2009a, 2009b)



WINSRFR 4 Development

Objectives

Reprogram the SRF
Unsupported develo
Modularity, extensibi

R engine (SRFR 5)
pment platform
ity, and maintainability

Application Programming Interface (API)
Develop debugging and diagnostic tools



SRFR 5.0 object-oriented

architecture
S =

RC :O:[Q°(QL _QR)+(1_9)(QJ —Qwm )]&
+[§0(AJ +ZJ)+(1_§0)(AM + Z )]'5XJM
_[¢’(AL+ZL)+(1_§0)(AR+ZR)]'5X|_R

RM :O:[¢’AL +(1_¢)AR]_(SO_Sf R

SRFR 5.0 - Irrigation Simulation Results
SRFR 5.0 - Object data within Timesteps t & t-1 - Nodes for Timestep t

—
__'_,_,-l-l—'_'_.__
. — 1l 1 1l
"’,_4-—-- T ps yet to be comp el el el e e ( Ce Cel Ce ¢
A |
E _ Nodes for Timestep t
= !;g -
Previously computed Timesteps ol
whose results are available Hﬁ"/p e el e e e e Cell Cell Cell e
-
/ﬁ 5 . history with
: :-"" :: i " Timest ep is also available
gl
N .
Distance x ——#=
Timestep t:  being computed ) . .
- Timestep t-1: previously computed - Timestep t:  being computed = lteration history is
Timestep t-1: previously computed stored in Timestep



The SRFR 5.0 API
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SRFR 5.0 Diagnostic screen
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Testing Program
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New Features and
Enhancements

Introduction of a Scripting Language. This language
provides a mechanism for batch executions of the
simulation engine from text/ spreadsheet files

Simulation of surge irrigation

Simulation with spatially variable infiltration,
roughness, and cross-sectional geometry

Simulation with the physically-based Green-Ampt
Infiltration

Operations analysis: examine furrow set width vs.
cutoff time for a specified inflow rate

Improved user interface
Improved User Manual




In Summary ...

WINSRFR 4.1 will be available later this year

We are interested in collaborating with
Interested researchers



Robust Operations and
Design Analysis



The iIssues

Spatially and temporally variable infiltration and
hydraulic resistance

Inflow rate may not be constant

The conseguences
System failure

Irrigator needs to adjust the operation in response
to actual performance

Degradation in system performance



Our objective

Determine solutions that will perform
adequately If actual field conditions deviate

from those assumed in the analysis
Recommend system adjustments



Characteristic Time Concept

- For a generic
Infiltration

D formulation:
req req’al’a2""’an)

o If infiltration Is
represented with the
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Operational Analysis Example

]
1 Border

71 600 m long X 40 m wide
- Slope = 0.002

- Open-end

o Dreq = 90 mm

o Infiltration
Treq=3.95h
NRCS Intake Family

o Manning n = 0.15



Operational Analysis Application

Efficiency Contour
_
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WINSRFR Operational Analysis
Countours

Application Efficiency (%)
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Design Example

Furrow

Slope = 0.002
Open-end, no recovery
Dreq = 90 mm

Treq =8.56 h

Manning n = 0.04
Qin=1501/s



PAEmMIn Design Contour
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What field layout should we
recommend?

Hydraulic
nerformance : : s mso-70

—arm equipment

~low depth and
velocity

Sensitivity
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Evaluating sensitivity to
Infiltration

Treq — opportunity time for Dreq

A — contribution of the steady infiltration rate
term to Dreg

If infiltration is represented with the Modified Kostiakov

equation:
. a
D, = K g T b T e

. b,
D

req




Sensitivity Analysis

Selected 2 solutions

Potential Application Efficiency (%)

300 m * 200 furrows
Bhh BEB ESE T 600 m * 100 furrows

PAEmMIn and Dumin

Simulated each solution
with varying infiltration,
with Treq and A as decision
variables

Simulations were
conducted onan 11 X 11
grid

Developed performance
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Application efficiency
S =
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Distribution uniformity of the
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Final advance time
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In Summary...

Performance contours are powerful tools for
understanding the performance of irrigation
systems

Sensitivity analysis are critical to the
development of practical design and
operational recommendations

Knowledge of the steady-state infiltration rate
IS critical for operational and especially design
analysis







Seasonal Irrigation Evaluations

Measure infiltration at the scale of irrigation
sets

Evaluate infiltration variability over the field
and the irrigation season

Examine relationship between infiltration
spatial variability and soil physical properties

Examine relationship between model-
predicted and field-measured infiltration
distribution uniformity.



Near-level furrow system,16 basins, 9
irrigation events




Evaluation of infiltration
1
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Spatial Variablility of Infiltration:

Irrigation 4
_

Infiltration Funchion
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Temporal Infiltration Variability: Basin
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Effect of Infiltration Variability on

Distribution Uniformitx
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Can we trust irrigation models?

No, If we are looking for accurate answers
Yes, if we are looking for useful answers

Factors to consid
Uncertainty of in

er when using models
outs

Avallability and o

uality of data

Theoretical and computational limitations



Questions?
-1



Irrigation by water application

- methodi USA ‘FRISi 20102

2003 2008

= gravity

| W gravity
= sprinkler m sprinkler
mdrip mdrip
wsub “sub

Millions of Has



Irrigation by water application

- methodi Arizona SFRISI 20102

2008
24.,6; 5%

= gravity
m sprinkler
= drip

Thousands of
Has



