

CAMPUS

DE EXCELENCIA INTERNACIONAL RESEARCH GROUP HIDRAULIC FOR IRRIGATION

Pressurized Irrigation Dealing with Water and Energy Efficiencies

LEONOR RODRÍGUEZ SINOBAS

(leonor.rodriguez.sinobas@upm.es)

IV WINOTEC Workshop Internacional de Inovações Tecnológicas na Irrigação

May 28-31, 2012. Fortaleza- Ceará-Brasil

PRESSURIZED IRRIGATION DEALING WITH WATER AND ENERGY EFFICIENCIES

Introduction

- Highlights
 - Automation on operation, control and management
 - ✓ Irrigation efficiency
 - ✓ Water saving
- Challenges
 - Design, management and operation of collective pressurized irrigation water networks to improve the energy and water efficiencies

IV WINOTEC Workshop Internacional de Inovações Tecnológicas na Irrigação

May 28-31, 2012. Fortaleza- Ceará-Brasil

INTRODUCTION

SURFACE IRRIGATION

High water application (it is difficult to get high irrigation efficiency since soil infiltration controls irrigation)

- Low energy consumption
- Less developed technology (this is more complicated than pressurized irrigation)

INTRODUCTION

PRESSURIZED IRRIGATION

- Less water application (soil does not control irrigation although wind can be an issue in sprinkler irrigation)
 - High energy consumption
- Technology level "simple" (open-closed hydraulic valves) and full developed

Automation on Operation, Control and Management

Technology development

- ✓ Pumps, filters...
- ✓ Frequency speed drives
- Electrical-hydraulic valves
- ✓ Flow meters
- Pressure transducers
- Remote controllers

Operation, Control and Management

Collective pressurized water networks

Management of irrigation networks
➢ On demand irrigation
➢ In turns irrigation

Irrigators file water orders at their Water Users Associations

IRRIGATION EFFICIENCY

Andalucian Irrigation Systems (Spain)

Source: Inventario de regadíos 2008.

WATER SCARCITY SCENARIO Modernization of irrigation systems

Open-channel systems change to pressurized pipe systems

Objectives for transforming traditional irrigation systems

- Water savings: competitiveness for diferent water uses and environmental sustainability
- Increase water productivity
- Increase agriculture competitiveness
 (possibility to irrigate more profitability crops)

Example of modernization

Spain

Area: 2 000 000 ha
 Cost: 7 400 M €

 (80 % paid by Public Administrations)

 Water savings : 1 132 hm³/year

Water devoted for irrigation:
✓ 80 % before modernization
✓ 65 % after modernization

(Source: MARM, 2002; MARM, 2006)

PRESSURIZED IRRIGATION IN THE WORLD

Country	Total irrigated area (Mha)	Sprinkler	Micro irrigation	Total sprinkler and micro irrigation	Percentage of total irrigated area	Year of reporting
		6				
USA	21.6	10 900 000	1 200 000	12 100 000	56	2003
Russia	4.5	3 500 000	20 000	3 520 000	78.2	2008
China	55.9	2 634 000	371 000	3 005 000	5.4	2005
India	56.8	1 634 997	864 000	2 498 997	4.4	2007
Spain	3.36	715 102	1 502 327	2 217 429	66.9	2007
Brazil	3.5	1,570,000	340 000	1 910 000	54.58	2004
France	1.575	1 379 800	103 300	1 483 699	94.2	2000
Italy	2.535	1 047 680	365 700	1 413 380	55.8	2000
South Africa	1.6	848 000	296 000	1 144 000	71.5	2004
Saudi Arabia	1.17	716 000	198 000	914 000	78.1	2004
Australia	2.384	524 480	190 720	715 200	30	2000
Canada	0.87	683 029	6 034	689 063	79.2	2004
Mexico	6.2	400 000	200 000	600 000	9.7	1999

EXPERIENCES IN WATER USER ASSOCIATIONS FROM THE EBRO BASIN (SPAIN)

Water and energy in Andalucian irrigation systems (Spain), year 2008

Irrigation method	Average water use (m ³ /ha)	Energy consumption (kW h/ m ³)	Energy consumption (kW h /ha)
Surface	5500	0.06	328
Sprinkler	5000	0.34	1723
Drip	2500	0.51	126 4

Source: Corominas 2009.

INOVAGRI International Meeting

CHANGING ENERGY PRICE SCENARIO

SPAIN

IRRIGATION	Before 2009		20	09	2010	
METHOD	ha	%	ha	%	ha	%
Surface	1 973 336	59	1 064 248	31.1	1 043 704	30.6
Sprinkler	802 712	24	765 440	22.4	735 544	21.6
Drip	568 588	17	1 591 616	46.5	1 628 705	47.8
Total	3 344 636	100	3 421 304	100	3 407 953	100

Source: FENACORE.

Reduction of 14 000 ha

CHANGING ENERGY PRICE SCENARIO

SPAIN

High energy consumption > 600 GWh /year High power requirement > 500 MW/year

Since 2006, the electrical tariffs have increased: ✓455 % the power term ✓70 % the energy term

Is pressurized irrigation feasible in a quick changing energy price market?

Evolution of Spanish farmers revenue (1990-2009)

Source: Anuario Estadística, MMARM.

ENERGY CONSUMPTION FOR IRRIGATION IN SPAIN

■3.1 A ■6.1 A

70 % from May to Setember30 % from January-April and October to December

Source: Iberdrolal Generación SAU.

Electrical tariffs are different during the day, they are grouped on: peak, medium, low.

- The power requirements in the contract subscribed with the electrical supplier is high.
- The cost of the power term is paid all year long although pumping is concentrated in five months

WHAT CAN WE DO WHEN ENERGY BECOMES A KEY FACTOR IN PRESSURIZED IRRIGATION ?

IMPROVE ENERGY EFFICIENCY?

REDUCE ENERGY COST?

Regional Energy Agencies develop AUDITS (http://www.idae.es/index.php/mod.pags/mem.detalle/relcate goria.1034/id.93/relmenu.55) for the improvement of the energy efficiency in irrigated areas

Energy Efficiency regards with the reduction in energy consumption while **Economical Efficiency** regards with the lowest energy cost for the same energy consumption

Energy Efficiency might improve by enhancing the design, operation and management of the irrigation systems network

Economical Efficiency might improve by enhancing the terms of the contract with the electrical supplier

Energy audits in Water Users Associations (WUA) in Spain:

- >Assess the energy efficiency in WUA (adequacy in the design of the pumping system components and their management)
- ➢Give a grade to the WUA assessing its energy efficiency
- Propose measures to reduce the energy consumption and, therefore the operation cost

What to do?

Determine the energy efficiency of pumping stations (Methodology developed by Abadía et al. 2008)

Fix the power term in the contract with the electrical supplier attending the real demanding irrigation requirements

Optimization of the design, operation and regulation of pumping systems

Develop criteria for a proper design, operation and regulation of pumps in pumping stations taking into caccount energy efficiency

Proper operation, regulation and maintenance of hydraulic valves

Source: Sánchez (2012).

Hydrant in the field

MANAGEMENT OF PRESSURIZED IRRIGATION NETWORKS

Optimize water and energy by grouping the irrigation sectors attending to: the network topology and monthly water demand. Number and arrangement of operating sectors would be different during the irrigation season according to water demand variability.

 Accurate estimation of crop water demands and irrigation practices

Water orders allocated and executed for optimizing water productivity and energy cost: genetic algorithms, dynamic programming

MANAGEMENT OF PRESSURIZED IRRIGATION NETWORKS

Source:Sánchez et al. 2012.

➢Simulation of different global (cropping patterns, irrigation operation,...) strategies performance on energy balance in irrigated districts.

Determination of key factors for improving energy balance

MANAGEMENT OF PRESSURIZED IRRIGATION NETWORKS

Periodical training of technicians and irrigators in the operation, assessment and maintenance of pressurized irrigation systems

LOOKING INTO THE FUTURE

Otech

Use of renewable energy sources: ✓ solar pannels ✓ windmills

LOOKING INTO THE FUTURE

Development of Precision Pressurized Irrigation Systems

✓ System for remote sensing crop assessment

- System for digital management of water application for irrigation in the field
- Wireless soil water content monitoring and groundwater system
- Spatial decision support system

Thank you very much

CAMPUS DE EXCELENCIA INTERNACIONAL LEONOR RODRÍGUEZ SINOBAS (leonor.rodriguez.sinobas@upm.es)

